Albay
Üyelik tarihi: Dec 2008
Mesajlar: 145,988
Tesekkür: 45
92 Mesajinıza toplam 143 kez İyi ki varsın demişler.İyi ki varsınız iyi ki varız.
| Whats Lasik? Whats Lasik?
LASIK
From Wikipedia, the free encyclopedia
Jump to: navigation, search LASIK, an acronym for Laser-assisted In Situ Keratomileusis, is a form of refractive laser eye surgery procedure performed by ophthalmologists intended for correcting myopia, hyperopia, and astigmatism.[1] The procedure is usually a preferred alternative to photorefractive keratectomy, PRK, as it requires less time for full recovery, and the patient experiences less pain overall. Many patients choose LASIK as an alternative to wearing corrective glasses or contact lenses. While LASIK has the ability to provide acute vision, there is no benchmark to quantify the quality of the image a patient sees.[2][3] Contents
[hide]
1 Technology development
2 Procedure
2.1 Preoperative
2.2 Operation
2.3 Postoperative
3 Industry concerns
4 Higher-order aberrations
4.1 Wavefront-guided LASIK
5 Complications
5.1 Preoperative sources of complications
5.2 Intraoperative complications
5.3 Early postoperative complications
5.4 Late postoperative complications
5.5 Other
5.6 Factors affecting surgery
6 Satisfaction
7 Safety and efficacy
8 References
9 See also
10 External links //[edit]
Technology development
The LASIK technique was made possible by Jose Barraquer (Colombia), who around 1960 developed the first microkeratome, used to cut thin flaps in the cornea and alter its shape, in a procedure called keratomileusis. This procedure was developed and pioneered by the Barraquer Clinic, based in Bogotá, Colombia.
In 1981, Rangaswamy Srinivasan discovered that an ultraviolet excimer laser could etch living tissue in a precise manner with no thermal damage to the surrounding area. He named the phenomenon Ablative Photodecomposition (APD). Srinivasan and his co-inventors ran tests using the excimer laser and a conventional, green laser to etch organic matter. They discovered that while the green laser produced rough incisions, damaged by charring from the heat, the excimer laser produced clean, neat incisions. In 1983, Srinivasan collaborated with an ophthalmic surgeon to develop APD to etch the cornea[1].
LASIK surgery was developed in 1990 by Lucio Buratto (Italy) and Ioannis Pallikaris (Greece) as a melding of two prior techniques, keratomileusis and photorefractive keratectomy. It quickly became popular because of its greater precision and lower frequency of complications in comparison with these former two techniques.[2]
In 1991, LASIK was performed for the first time in the United States by Stephen Brint and Stephen Slade [3]. The same year, Thomas and Tobias Neuhann successfully treated the first German LASIK patients with an automated microkeratome.[citationneeded]
Today, faster lasers, larger spot areas, bladeless flap incision, and wavefront-optimized and -guided techniques have significantly improved the reliability of the procedure as compared to that of 1991. Nonetheless, the fundamental limitations of excimer lasers and undesirable destruction of the eye's nerves have spawned research into many alternatives to plain LASIK, including all-femtosecond correction (FLIVC), LASEK, Epi-LASIK, wavefront-guided PRK, and modern intraocular lenses. Furthermore, the long term effects of LASIK surgery still remain unknown.
[edit]
Procedure
[edit]
Preoperative
Patients wearing soft contact lenses typically are instructed to stop wearing them approximately 7 to 10 days before surgery. One industry body recommends that patients wearing hard contact lenses should stop wearing them for a minimum of six weeks plus another six weeks for every three years the hard contacts had been worn. [4] Before the surgery, the surfaces of the patient's corneas are examined with a computer-controlled scanning device to determine their exact shape. Using low-power lasers, it creates a topographic map of the cornea. This process also detects astigmatism and other irregularities in the shape of the cornea. Using this information, the surgeon calculates the amount and locations of corneal tissue to be removed during the operation. The patient typically is prescribed an antibiotic to start taking beforehand, to minimize the risk of infection after the procedure.
[edit]
Operation
The operation is performed with the patient awake and mobile; however, the patient typically is given a mild sedative (such as Valium) and anesthetic eye drops.
Lasik is performed in two steps. The initial step is to create a flap of corneal tissue. This process is achieved with a mechanical microkeratome using a metal blade, or a femtosecond laser microkeratome (procedure known as IntraLASIK) that creates a series of tiny closely arranged bubbles within the cornea.[5] A hinge is left at one end of this flap. The flap is folded back, revealing the stroma, the middle section of the cornea. The process of lifting and folding back the flap can be uncomfortable.
The second step of the procedure is to use an excimer laser (193nm) to remodel the corneal stroma. The laser vaporizes tissue in a finely controlled manner without damaging adjacent stroma by releasing the molecular bonds that hold the cells together. No burning with heat or actual cutting is required to ablate the tissue. The layers of tissue removed are tens of micrometers thick.
During the second step, the patient's vision will become very blurry once the flap is lifted. He/she will be able to see only white light surrounding the orange light of the laser. This can be disorienting.
Currently manufactured excimer lasers use a computer system that tracks the patient's eye position up to 4,000 times per second, redirecting laser pulses for precise placement. After the laser has reshaped the cornea, the Lasik flap is repositioned over the treatment area by the surgeon. The flap remains in position by natural adhesion until healing is completed.
Performing the laser ablation in the deeper corneal stroma typically provides for more rapid visual recovery and less pain.
[edit]
Postoperative
Patients are usually given a course of antibiotic and anti-inflammatory eye drops. These are discontinued in the weeks following surgery. Patients are also given a darkened pair of goggles to protect their eyes from bright lights and protective shields to prevent rubbing of the eyes when asleep.
[edit]
Industry concerns
There are many concerns and movements to change the way the LASIK industry operates. Primarily these are based on the distribution of information by surgeons to potential patients.[4] It is often argued that patients are not given sufficent information regarding the possible complications, their side effects, and final outcomes. A survey in the United Kingdom indicated that most LASIK patients expected their vision to become at least 20/20 after surgery and few knew it could potentially be worse.[citationneeded]
This section is a stub. You can help by adding to it.
[edit]
Higher-order aberrations
Higher-order aberrations are visual problems not captured in a traditional eye exam which only tests for acuteness of vision. Severe aberrations can effectively cause significant vision impairment. These aberrations include starburts, ghosting, halos, double vision, and a number of other post-operative complications listed below.
Concern has long plagued the tendency of refractive surgeries to induce higher-order aberration not correctible by traditional contacts or glasses. The advancement of LASIK technique and technologies has helped reduce the risk of clinically significant visual impairment after the surgery. One of the major discoveries was the correlation between pupil size and aberrations[5]: Effectively, the larger the pupil size, the greater the risk of aberations. This correlation is the result of the irregularity between the untouched part of the cornea and the reshaped part. Daytime post-lasik vision is optimal, since the pupil is smaller than the LASIK flap. But at night, the pupil may expand such that light passes through the edge of the LASIK flap into the pupil which gives rise to many aberrations. There are other currently unknown factors in addition to pupil size that also affect higher order aberrations.
In extreme cases, where ideal technique was not followed and before key advances, some people could suffer rather debilitating symptoms including serious loss of contrast sensitivity in poor lighting situations.
Over time, most of the attention has been focused on spherical aberration. LASIK and PRK tend to induce spherical aberration, because of the tendency of the laser to undercorrect as it moves outward from the center of the treatment zone. This is really only a significant issue for large corrections. There is some thought if the lasers were simply programmed to adjust for this tendency, no significant spherical aberration would be induced. Hence, in eyes with little existing higher order aberrations, wavefront optimized lasik rather than wavefront guided LASIK may well be the future. Regardless, most patients with even the low to medium corrections remain highly satisfied even with conventional LASIK, however patients requiring higher corrections often complain about night vision. [6]
[edit]
Wavefront-guided LASIK
Wavefront-guided LASIK is a variation of LASIK surgery where, rather than apply a simple correction of focusing power to the cornea (as in traditional LASIK), an ophthalmologist applies a spatially varying correction, using a computer-controlled high-power UV laser guided by measurements from a wavefront sensor. The goal is to achieve a more optically perfect eye, though the final result still depends on the physician's success at predicting changes which occur during healing. In older patients though, scattering from microscopic particles plays a major role and may exceed any benefit from wavefront correction. Hence, patients expecting so-called super vision from such procedures may be disappointed. However, while unproven, surgeons claim patients are generally more satisfied with this technique than with previous methods, particularly regarding lowered incidence of halos, the visual artifact caused by spherical aberration induced in the eye by earlier methods.
[edit]
Complications
A subconjunctival hemorrhage is a common and minor post-LASIK complication.The incidence of refractive surgery patients having unresolved complications six months after surgery has been estimated from 3%[7] to 6%[8]. The following are some of the more frequently reported complications of LASIK[7][6]:
Dry eyes
Overcorrection or undercorrection
Visual acuity fluctuation
Halos or starbursts around light sources at night
Light sensitivity
Ghosts or double vision
Wrinkles in flap (striae)
Decentered ablation
Debris or growth under flap
Thin or buttonhole flap
Induced astigmatism
Epithelium erosion
Posterior vitreous detachment[9]
Macular hole[10]
Complications due to LASIK have been classified as those that occur due to preoperative, intraoperative, early postoperative, or late postoperative sources[11]:
[edit]
Preoperative sources of complications
[edit]
Intraoperative complications
The incidence of flap complications has been estimated to be 0.244%[12]. Flap complications (such as displaced flaps or folds in the flaps that necessitate repositioning, diffuse lamellar keratitis, and epithelial ingrowth) are common in lamellar corneal surgeries [13] but rarely lead to permanent visual acuity loss; the incidence of these microkeratome-related complications decreases with increased physician experience [14][15]. This risk is further reduced by the use of IntraLasik and other non-microkeratome related approaches. A slipped flap (a corneal flap that detaches from the rest of the cornea) is one of the most common complications. The chances of this are greatest immediately after surgery, so patients typically are advised to go home and sleep, to let the flap heal. Flap interface particles are another finding whose clinical significance is undetermined.[16]. A Finnish study found that particles of various sizes and reflectivity were clinically visible in 38.7% of eyes examined via slit lamp biomicroscopy, but apparent in 100% of eyes using confocal microscopy.[16]
[edit]
Early postoperative complications
The incidence of diffuse lamellar keratitis (DLK)[7], also known as the Sands of Sahara syndrome, has been estimated at 2.3%.[17] When diagnosed and appropriately treated, DLK resolves with no lasting vision limitation. The incidence of infection responsive to treatment has been estimated at 0.4%[17]. Infection under the corneal flap is possible. It is also possible that a patient has the genetic condition keratoconus that causes the cornea to thin after surgery. Although this condition is screened in the preoperative exam, it is possible in rare cases (about 1 in 5,000) for the condition to remain dormant until later in life (the mid-40s). If this occurs, the patient may need rigid gas permeable contact lenses, Intrastromal Corneal Ring Segments (Intacs)[18], Corneal Collagen Crosslinking with Riboflavin[19] or a corneal transplant. The incidence of persistent dry eye has been estimated to be as high as 28% in Asian eyes and 5% in Caucasian eyes[8]. Nerve fibers in the cornea are important for stimulating tear production. A year after LASIK, subbasal nerve fiber bundles remain reduced by more than half [20]. The incidence of subconjunctival hemorrhage has been estimated at 10.5%.[17]
[edit]
Late postoperative complications
The incidence of epithelial ingrowth has been estimated at 0.1%[17]. Glare is another commonly reported complication of those who have had LASIK[21]. Halos or starbursts around bright lights at night are caused by the irregularity between the lasered part and the untouched part. It is not practical to perform the surgery so that it covers the width of the pupil at full dilation at night, and the pupil may expand so that light passes through the edge of the flap into the pupil.[8] In daytime, the pupil is smaller than the edge. Modern equipment is better suited to treat those with large pupils, and responsible physicians will check for them during examination.
[edit]
Other
Although there have been a number of improvements in LASIK technology [9][10] [11] , a large body of conclusive evidence on the chances of long-term complications is not yet in place. Also, there is a small chance of complications, such as slipped flap, corneal infection, haziness, halo, or glare. The procedure is irreversible.
The incidence of macular hole has been estimated at 0.2%[10] to 0.3% [22].
The incidence of retinal detachment has been estimated at 0.36%[22].
The incidence of choroidal neovascularization has been estimated at 0.33%[22].
The incidence of uveitis has been estimated at 0.18%[23]
Although the cornea usually is thinner after LASIK because of the removal of part of the stroma, refractive surgeons strive to maintain a minimum thickness in order to not structurally weaken the cornea. Decreased atmospheric pressure at higher altitudes has not been shown to be extremely dangerous to the eyes of LASIK patients. However, some mountain climbers have experienced a myopic shift at extreme altitudes [12] [13]. There are no published reports documenting diving-related complications after LASIK [14].
Laser in situ keratomileusis increases higher order wavefront aberrations of the cornea[24] [25]. Glasses do not correct higher order aberrations.
Microfolding has been reported as an almost unavoidable complication of LASIK whose clinical significance appears negligible.[16]
[edit]
Factors affecting surgery
The cornea typically is avascular because it must be transparent to function normally. Its cells absorb oxygen from the tear film. Low oxygen-permeable contact lenses reduce the cornea's absorption of oxygen, which sometimes results in the growth of blood vessels into the cornea, a process known as corneal neovascularization. This can cause a mild increase in inflammation and healing time and some discomfort during the surgery because of augmented bleeding. Although some contact lenses, notably modern RGP and soft silicone hydrogel lenses, are made of materials with higher oxygen permeability that help reduce the risk of corneal neovascularization, patients considering LASIK are cautioned to avoid overwearing their lenses. It is usually recommended that contact lens use be discontinued several days or weeks before the LASIK procedure.
A 2004 Wake Forest University study found that LASIK results are affected by heat and humidity, both during the procedure and in the two weeks before surgery[15].
[edit]
Satisfaction
Various surveys have been performed to determine patient satisfaction with LASIK. These surveys have found most patients to be satisfied, with anywhere from 92-98% of respondents describing themselves as satisfied[21] [26] [27] [28]. Those who are unsatisfied tend to be those who have had some of the above-described complications.
[edit]
Safety and efficacy
The reported figures for safety and efficacy are open to interpretation. In 2003, the Medical Defence Union (MDU), the largest insurer for doctors in the United Kingdom, reported a 166% increase in claims involving laser eye surgery; however, the MDU averred that these claims resulted primarily from patients' unrealistic expectations of LASIK rather than faulty surgery.[29] A 2003 study reported in the medical journal Ophthalmology found that nearly 18% of treated patients and 12% of treated eyes needed retreatment.[30] The authors concluded that higher initial corrections, astigmatism, and older age are risk factors for LASIK retreatment.
In 2004, the British National Health Service's National Institute for Health and Clinical Excellence (NICE) considered a systematic review of four randomized controlled trials [31][32] before issuing guidance for the use of LASIK within the NHS.[33] Regarding the procedure's efficacy, NICE reported, Current evidence on LASIK for the treatment of refractive errors suggests that it is effective in selected patients with mild or moderate short-sightedness but that evidence is weaker for its effectiveness in severe short-sightedness and long-sightedness. Regarding the procedure's safety, NICE reported that there are concerns about the procedure's safety in the long term and current evidence does not appear adequate to support its use within the NHS without special arrangements for consent and for audit or research. Leading refractive surgeons in the United Kingdom and United States, including at least one author of a study cited in the report, believe NICE relied on information that is severely dated and weakly researched.[34][35]
[edit]
References ^ LASIK. Aetna InteliHealth Inc. Accessed October 18, 2006. ^ http://findarticles.com/p/articles/mi_hb3331/is_200405/ai_n8040741 ^ http://www.hotlib.com/articles/show.php?t=Night_Vision_Problems_Caused_By_LASIK_E ye_Surgery ^ http://www.lasikinfocenter.net/Webpages/Deceptive%20Marketing%20Practices%20Webpage.html ^ http://www.usaeyes.org/lasik/faq/lasik-pupil-size.htm ^ http://www.nice.org.uk/pdf/2004_51_launchLASIK.pdf
^ ab Council for Refractive Surgery Quality Assurance. The most common complications of refractive surgery.. ComplicatedEyes.org.
^ ab Albietz JM, Lenton LM, McLennan SG. Dry eye after LASIK: comparison of outcomes for Asian and Caucasian eyes. Clin Exp Optom. 2005 Mar;88(2):89-96. ^ Mirshahi A, Schopfer D, Gerhardt D, Terzi E, Kasper T, Kohnen T. Incidence of posterior vitreous detachment after laser in situ keratomileusis. Graefes Arch Clin Exp Ophthalmol. 2006 Feb;244(2):149-53. Epub 2005 Jul 26. PMID 16044328.
^ ab Arevalo JF, Mendoza AJ, Velez-Vazquez W, Rodriguez FJ, Rodriguez A, Rosales-Meneses JL, Yepez JB, Ramirez E, Dessouki A, Chan CK, Mittra RA, Ramsay RC, Garcia RA, Ruiz-Moreno JM. Full-thickness macular hole after LASIK for the correction of myopia. Ophthalmology. 2005 Jul;112(7):1207-12. PMID 15921746. ^ Majmudar, PA. LASIK Complications. Focal Points: Clinical Modules for Ophthalmologists. American Academy of Ophthalmology. September, 2004. ^ Carrillo C, Chayet AS, Dougherty PJ, Montes M, Magallanes R, Najman J, Fleitman J, Morales A. Incidence of complications during flap creation in LASIK using the NIDEK MK-2000 microkeratome in 26,600 cases. J Refract Surg. 2005 Sep-Oct;21(5 Suppl):S655-7. PMID 16212299. ^ http://www.lasikinstitute.org/Intraoperative.html ^ http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uid s=99153623&dopt=Citation ^ http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abs tract&list_uids=10811084&query_hl=9
^ abc Vesaluoma M, Perez-Santonja J, Petroll WM, Linna T, Alio J, Tervo T. Corneal stromal changes induced by myopic LASIK. Invest Ophthalmol Vis Sci. 2000 Feb;41(2):369-76. PMID 10670464.
^ abcd Sun L, Liu G, Ren Y, Li J, Hao J, Liu X, Zhang Y. Efficacy and safety of LASIK in 10,052 eyes of 5081 myopic Chinese patients. J Refract Surg. 2005 Sep-Oct;21(5 Suppl):S633-5. PMID 16212294. ^ http://www.usaeyes.org/faq/subjects/intacs.htm ^ http://www.usaeyes.org/lasik/faq/c3-r.htm ^ Lee BH, McLaren JW, Erie JC, Hodge DO, Bourne WM. Reinnervation in the cornea after LASIK. Invest Ophthalmol Vis Sci. 2002 Dec;43(12):3660-4. PMID 12454033.
^ ab Tahzib NG, Bootsma SJ, Eggink FA, Nabar VA, Nuijts RM. Functional outcomes and patient satisfaction after laser in situ keratomileusis for correction of myopia. J Cataract Refract Surg. 2005 Oct;31(10):1943-51. PMID 16338565.
^ abc Ruiz-Moreno JM, Alio JL. Incidence of retinal disease following refractive surgery in 9,239 eyes. J Refract Surg. 2003 Sep-Oct;19(5):534-47. PMID 14518742. ^ Suarez E, Torres F, Vieira JC, Ramirez E, Arevalo JF. Anterior uveitis after laser in situ keratomileusis. J Cataract Refract Surg. 2002 Oct;28(10):1793-8. PMID 12388030. ^ Yamane N, Miyata K, Samejima T, Hiraoka T, Kiuchi T, Okamoto F, Hirohara Y, Mihashi T, Oshika T. Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis. Invest Ophthalmol Vis Sci. 2004 Nov;45(11):3986-90. PMID 15505046. ^ Oshika T, Miyata K, Tokunaga T, Samejima T, Amano S, Tanaka S, Hirohara Y, Mihashi T, Maeda N, Fujikado T. Higher order wavefront aberrations of cornea and magnitude of refractive correction in laser in situ keratomileusis. Ophthalmology. 2002 Jun;109(6):1154-8. PMID 12045059. ^ Saragoussi D, Saragoussi JJ. [Lasik, PRK and quality of vision: a study of prognostic factors and a satisfaction survey.] J Fr Ophtalmol. 2004 Sep;27(7):755-64. PMID 15499272. ^ Bailey MD, Mitchell GL, Dhaliwal DK, Boxer Wachler BS, Zadnik K. Patient satisfaction and visual symptoms after laser in situ keratomileusis. Ophthalmology. 2003 Jul;110(7):1371-8. PMID 12867394. ^ McGhee CN, Craig JP, Sachdev N, Weed KH, Brown AD. Functional, psychological, and satisfaction outcomes of laser in situ keratomileusis for high myopia. J Cataract Refract Surg. 2000 Apr;26(4):497-509. PMID 10771222. ^ http://news.bbc.co.uk/2/hi/health/2937512.stm ^ http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abs tract&list_uids=12689897&query_hl=5 ^ http://www.nice.org.uk/pdf/ip/233overview.pdf ^ http://www.nice.org.uk/pdf/ip/Finalreport%20010605.pdf ^ http://www.nice.org.uk/pdf/2004_51_launchLASIK.pdf ^ http://www.prnewswire.co.uk/cgi/news/release?id=136786 ^ http://escrs.com/Publications/Eurotimes/05january/pdf/regmatters.pdf [edit]
See also
LASEK (Laser-Assisted Sub-Epithelial Keratectomy) or PRK (Photorefractive keratectomy)
Radial keratotomy
Wavefront
Myopia also known as Near-sightedness
Hyperopia also known as Far-sightedness
Refractive surgery
Refractive error
[edit]
External links
FDA information page on LASIK
Vision Surgery Rehab Network Support site for people with complications from LASIK and other eye surgeries.
ComplicatedEyes.org Resources for patients with Lasik and other eye surgery complications.
Visionsimulations.com How patients with refractive surgery complications see the world.
Clario Refractive corneal surgery database and lexicon
U.S. National library of medicine
Eye surgery education council LASIK faqs Retrieved from http://en.wikipedia.org/wiki/LASIK
[b] Buraya ilk defa geliyorsanız ismim Atakan Sönmez ve burası hayatimdegisti.com.Boğaziçi üniversitesi mezunuyum ve Türkiyede ilk Subliminal Telkin Uzmanıyım.tıklayın Bir site olsa onu bulanların uykuda dinledikleri mp3 ler ile hayatları değişse… Bir site olsa onu bulanlar hipnoz olmadan sadece subliminal mp3 leri yükleyip ve uykuda dinleyerek hayatlarını değiştirseler. Bu fikir 1995 yılında yani 25 yıl önce çıkmıştı. 15 yıl önce ise bu mp3 lerin kişiye engel olan çekirdek inançlara göre hazırlanması yani cekirdekinanc.com fikri oluştu Hipnoz gibi bir şey mi subliminal mp3 nedir? Tam olarak değil. Öncelikle size engel olan 0-11 yaş arası oluşan bilinçaltı kayıtlarınız yani çekirdek inançlarınız bulunur. Sonra bu çekirdek inançlarınızın pozitif halleri olumlamalar isminize özel olarak mp3 lerin ve müziğin içine gizlenir. Siz de uykuda ya da uyanıkken bu mp3 leri dinleyerek sonuç alırsınız. Çocukluğunuzda size söylenenlerin tam tersini dinlediğiniz kayıtlarla binlerce kez bilinçaltınıza yerleştirmiş oluruz. Çekirdek inançların hayatımda engellere neden olduğunu nasıl anlarım? Hayatınızda hep aynı şeyler tekrar ediyorsa. İlişkilerde hep aynı şeyleri yaşıyorsanız... Aşırı fedakar bir yapınız varsa ve bu sanki göreviniz haline geldiyse. Birilerini kurtarmaya çalışıyorsanız. Paranızın bereketi yoksa sürekli gereksiz harcamalar çıkıyorsa birikim yapamıyorsanız. Hayır demekte zorlanıyorsanız. Odaklanmakta bir şeyleri devam ettirmekte sorun yaşıyorsanız. İlişkilerde mıknatıs gibi sorunlu kişileri çekiyorsanız. İş hayatında iniş çıkışlar sürekli oluyorsa. Ertelemeleriniz fazla ise. Aşırı kontrolcü ve garantici bir yapınız varsa kaygı düzeyiniz yüksekse hep en kötü ihtimali düşünüyorsanız ve şanssızlıkları sorunlu olayları ve sorunlu kişileri hayatınıza çekiyorsanız çocuk yaşta oluşan çekirdek inançlar hayatınızı yönetiyor olabilir.
25. yıla özel şimdi arayanlara 5 dakikalık çekirdek inanç ön tespit ve bir günlük deneme telkin mp3 ücretsizdir. Ön tespitte size engel olan birkaç çekirdek inanç örneği verilir. Atakan Sönmez tarafından yapılır ve bilgi amaçlıdır. +90 5424475050 Türkiye dışındakiler whatsapp tan arayabilir cekirdekinanc.com inceleyiniz. |